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The rotational Smoluchowski equation for the orientational distribution func-
tion of two dipoles with classical Heisenberg interaction is solved exactly. The
equilibrium self- and pair time-correlation functions of the two dipole moments
are evaluated. They are shown to be approximated well over a wide range of
interaction strength by a superposition of two exponentials.
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1. INTRODUCTION

The theory of dipolar relaxation was initiated by Debye. (1) He calculated
the average moment of a dipole immersed in a liquid on the basis of the
rotational diffusion equation for its orientational distribution function. In
the absence of an applied field the relaxation is exponential and charac-
terized by a single relaxation time. Debye calculated the relaxation time
from the Stokes–Einstein theory of Brownian motion. Later theories of
dielectric or magnetic relaxation were extensions of Debye’s single dipole
picture.

Clearly, in a dense liquid or suspension interactions between dipoles
cannot be neglected. Usually these are taken into account in a continuum
model of the local field. (2–4) A proper statistical mechanical treatment can
be based on a cluster expansion. (5) In particular this requires solution of the



pair problem. In the following we study the relaxation of two interacting
dipoles immersed in a fluid. The electrostatic dipole interaction is difficult
to handle due to its dependence on the relative position vector. (6) As a
model system we consider two dipoles interacting with a classical isotropic
Heisenberg interaction.

The problem was studied earlier by Felderhof and Jones (7) and solved
exactly. However, their numerical work was limited to relatively low
interaction strength. We show in the following that the solution can be
improved by transformation to a convenient matrix representation of the
Smoluchowski equation describing the rotational diffusion of two interact-
ing dipoles. This leads to a rapidly convergent numerical scheme which can
be used even for high interaction strength. Thus both the preceding work (7)

and the present one lead to an algorithm allowing to calculate desired cor-
relation functions with arbitrary precision. The present algorithm is to be
preferred, since it leads to faster convergence.

We study in particular the time-correlation functions of the two dipole
moments. We find that even for strong interactions both the self-correla-
tion function and the pair correlation function have remarkably simple
behavior, and can be characterized to a good approximation by two expo-
nential relaxation modes. These correspond to a single exponential for the
total dipole moment, and another one for the staggered order parameter.

2. ORIENTATIONAL TIME-CORRELATION FUNCTIONS

We consider two dipoles with orientations characterized by unit
vectors u1, u2. The orientations fluctuate stochastically due to interactions
with a heat bath at temperature T. The probability distribution of orienta-
tions P(u1, u2, t) is assumed to satisfy the Smoluchowski equation

“P
“t

=DP (2.1)

with Smoluchowski operator D defined by

DP=DRL · [LP+b(Lv) P], (2.2)

where DR is the rotational diffusion coefficient for a single dipole, and
L=(L1, L2) is a rotation operator with components for dipole j

Lj=uj ×
“

“uj
. (2.3)
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Furthermore, b=1/kBT and v(u1, u2) is the pair potential, assumed to be
of Heisenberg form

v(u1, u2)=Ju1 · u2 (2.4)

with interaction strength J. We abbreviate K=bJ. The Smoluchowski
equation imposes no limitation on the strength of the interaction, as long
as there is timescale separation from the inertial regime.

In the course of time the solution of the Smoluchowski equation (2.1)
tends to the equilibrium distribution

Peq(u1, u2)=
1

16p2 exp[ − Ku1 · u2]/Y0(K) (2.5)

with normalization integral

Y0(K)=
1

16p2 F exp[ − Ku1 · u2] du1 du2. (2.6)

The latter is easily evaluated as

Y0(K)=
sinh K

K
. (2.7)

It follows from the H-theorem (8) that the stationary solution is unique. The
H-theorem shows that for any initial distribution P(u1, u2, 0) the solution
of Eq. (2.1) tends to the equilibrium solution Eq. (2.5). In the following we
choose the unit of time such that DR=1.

We define the adjoint Smoluchowski operator L by the relation

DfPeq=PeqLf. (2.8)

It is given by

L=L2 − b(Lv) · L. (2.9)

The corresponding operator L2 for free diffusion is denoted as L0. The
interaction operator V is defined as the difference

V=L−L0=−b(Lv) · L. (2.10)

Several time-correlation functions are of interest. We consider the
vector functions (7)

Pa
a =(u1 · u2)a ua, a=1, 2 (2.11)
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We have raised the exponent by unity in comparison with ref. 7 for conve-
nience in the following. By isotropy the equilibrium average of these
vectors vanishes. We shall consider the time-correlation function

Gab
ka (t)=OPa

k(t) Pb
a (0)P, (2.12)

where the angled brackets indicate the average over the equilibrium distri-
bution Eq. (2.5), and the time-dependence is governed by the adjoint
Smoluchowski operator L such that

Pa
k(t)=exp(Lt) Pa

k(0), Pa
k(0)=Pa

k. (2.13)

By isotropy the tensor function Gab
kl (t) is proportional to the unit tensor

Gab
kl (t)=1

3 Gab
kl (t) 1, (2.14)

so that it suffices to consider the scalar function Gab
kl (t). The initial value of

the function is (7)

Gab
kl (0)=

Yk+l(K)
Y0(K)

dab+
Yk+l+1(K)

Y0(K)
(1 − dab), (2.15)

where Yl(K)is defined by the integral

Yl(K)=
1

16p2 F (u1 · u2) l exp(−Ku1 · u2) du1 du2. (2.16)

The integral is given by

Yl(K)=1 −
d

dK
2 l

Y0(K). (2.17)

It can be evaluated from recursion relations. (7)

The lowest order function Gab
00 (t) is of particular interest. We shall

consider in particular the self- and pair correlation functions Gs(t) and
Gd(t) defined by

Gs(t)=G11
00(t), Gd(t)=G12

00(t). (2.18)

We define also

G± (t)=2Gs(t) ± 2Gd(t). (2.19)
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In the theory of the effective rotational diffusion coefficient of a sus-
pension (7) the self- and pair correlation functions for the vectors

X1=u1 − (u1 · u2) u2, X2=u2 − (u1 · u2) u1 (2.20)

are of interest. One has

OXa(t) Xb(0)P=1
3 [G s

00(t) − 2Gd
01(t)+Gs

11(t)] dab 1

+1
3 [Gd

00(t) − 2G s
01(t)+Gd

11(t)](1 − dab) 1. (2.21)

The initial value is

OXaXbP=
W1(K)

3 sinh K
dab1 −

W2(K)
3 sinh K

(1 − dab) 1, (2.22)

where Wl(K) is defined by

Wl(K)=−K[Yl+1(K) − Yl − 1(K)]. (2.23)

Hence the relation with the functions A(K, t) and B(K, t) defined in ref. 7
is

OX1(t) · X1(0)P=
A(K, t)
Y0(K)

, OX1(t) · X2(0)P=
B(K, t)
Y0(K)

. (2.24)

In order to study the time-dependence of the correlation functions we must
solve the Smoluchowski equation.

3. MOMENT EQUATIONS

We solve the Smoluchowski equation by deriving a set of moment
equations. It is important that we minimize the number of equations by
exploiting the symmetries of the problem. It turns out that the set of vector
functions defined in Eq. (2.11) for integer l=0, 1, 2,... is sufficient for our
purpose. We consider time-correlation functions of the form

GUU(t)=OU(t) · U(0)P, (3.1)

where U(0)=U(u1, u2) has an expansion in terms of vector functions (2.11)

U= C
.

a=0
[U(1)

l P1
l (u1, u2)+U(2)

a P2
l (u1, u2)]. (3.2)
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Since the adjoint Smoluchowski operator L, defined in Eq. (2.9), is sym-
metric under interchange of particle labels, it is appropriate to consider
instead

U= C
.

a=0
[U+

a P+
l (u1, u2)+U−

a P−
a (u1, u2)] (3.3)

with

P ±
a =(u1 · u2)a (u1 ± u2), (3.4)

so that

U ±
a =1

2 (U(1)
a ± U (2)

a ). (3.5)

We define the one-sided Fourier transform of the time-correlation function
as

ĜUU(w)=F
.

0
e iwtGUU(t) dt. (3.6)

In calculating this one needs to solve the equation

(iw+L) k=U. (3.7)

By linearity we can put

k=k++k−, U=U++U− (3.8)

with k ± satisfying the equation

(iw+L) k ±=U ±. (3.9)

The function k ± is symmetric (antisymmetric) under interchange of
particle labels. By symmetry the vector function k ± can be expanded as

k ±(u1, u2)= C
.

a=0
A ±

a P ±
a (u1, u2). (3.10)

This implies that Eq. (3.9) has the matrix representation (7)

sA ±
a + C

.

aŒ=0
M ±

aaŒ
A ±

aŒ
=−U ±

a (3.11)
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with variable s=−iw. The matrix M ± is found from the action of the
evolution operator L on the functions P ±

a .
The action of the free diffusion operator is given by

L0P ±
a =2a(a − 1) P ±

a − 2 ± 2aP ±
a − 1 − 2(a+1)2 P ±

a . (3.12)

The interaction operator V in Eq. (2.10) can be expressed as

V=−K(u1 × u2) · (L1 − L2). (3.13)

Its action on the vector function P ±
a is given by

(u1 × u2) · (L1 − L2) P ±
a =2aP ±

a − 1 ± P ±
a − (2a+1) P ±

a+1. (3.14)

The matrix M ± in Eq. (3.11) therefore reads explicitly

M ±
aaŒ

=[2(a+1)2 ± K] daaŒ − 2(a+1)(a+2) da, aŒ − 2

− 2(a+1)( ± 1 − K) da, aŒ − 1 − (2a − 1) Kda, aŒ+1. (3.15)

From Eq. (2.15) we find for the desired correlation function

ĜUU(w)=
− 2
Y0

C
kl

[A+
k U+

l (Yk+l+Yk+l+1)+A−
k U−

l (Yk+l − Yk+l+1)]. (3.16)

In earlier work (7) the equations (3.11) were solved numerically by trunca-
tion at sufficiently high multipole order a. We show in the following that it
is advantageous to transform first to a different representation in which the
matrices are tridiagonal.

4. CHANGE OF REPRESENTATION

The change of representation is based on the observation that the
action of the linear operators in the space of vector functions can be
mapped onto the action of differential operators on scalar functions of a
single variable. The differential equation corresponding to the free diffu-
sion operator L0 can be solved explicitly in terms of Jacobi polynomials. In
the corresponding matrix representation the free diffusion operator is
diagonal. Surprisingly, the matrix corresponding to the interaction operator
remains tridiagonal.

It is convenient to denote the linear operators in the scalar description
by symbols similar to those of the vector problem. Thus we map Eq. (3.12)
onto the equation

L ±
0 xa=2a(a − 1) xa − 2 ± 2axa − 1 − 2(a+1)2 xa, (4.1)
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where x is a complex number. Similarly we map Eqs. (3.13) and (3.14) onto
the equation

V ±xa=−K [2axa − 1 ± xa − (2a+1) xa+1]. (4.2)

The eigenvalue problem in the space of vector functions

Lkl=lkl (4.3)

is therefore mapped onto the pair of eigenvalue problems

(L ±
0 +V ±) f ±

l =lf ±
l (4.4)

for scalar functions f ±
l (x). Explicitly we have in the scalar problem by use

of Eqs. (4.1) and (4.2)

L ±
0 f ±=2 5 d

dx
(1 − x2)

df ±

dx
− (x + 1)

df ±

dx
− f ±6 (4.5)

for the free diffusion operator, and

V ±f ±=−K 52(1 − x2)
df ±

dx
− (x + 1) f ±6 (4.6)

for the interaction operator. A function f ±(x) can be Taylor-expanded as

f ±(x)= C
.

a=0
f ±

a xa (4.7)

and is mapped onto the corresponding vector function

k ±(u1, u2)= C
.

a=0
f ±

a P ±
a (u1, u2). (4.8)

In particular, a solution f ±
n (x) of the eigenvalue problem

d
dx

(1 − x2)
df ±

n

dx
− [x + 1+K(1 − x2)]

df ±
n

dx
− f ±

n

+
1
2

K(x + 1) f ±
n =

1
2

l ±
n f ±

n (4.9)

with eigenvalue l ±
n corresponds to an eigenfunction F ±

n (u1, u2) of the
Smoluchowski operator with the same eigenvalue. The eigenfunction
F ±

n (u1, u2) is symmetric (antisymmetric) in the particle labels.
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Substituting Eq. (3.4) we see that we obtain the eigenfunction
F ±

n (u1, u2) from the eigenfunction f ±
n (x) simply by interpreting x as the

scalar product u1 · u2 and multiplying by u1 ± u2. With this interpretation
the variable x is restricted to the interval − 1 [ x [ 1, and the eigenfunc-
tions are specified as solutions of the differential equation (4.9) which are
regular at x= ± 1.

We denote the eigenfunctions of the unperturbed problem Eq. (4.9)
with K=0 by {f ±

0n(x)}, and the corresponding eigenvalues by l ±
0n. These

eigenfunctions are Jacobi-polynomials. (9) The highest term of the polyno-
mial of order n is proportional to xn. We find it convenient to normalize
the eigenfunctions f ±

0n(x) such that the coefficient of the highest term
equals unity. Then

f+
0n(x)=

1
kn

P (0, 1)(x), f−
0n(x)=

1
kn

P (1, 0)(x) (4.10)

with normalization coefficient (9)

kn=
1
2n
R2n+1

n
S . (4.11)

The eigenvalues are

l ±
0n=−2(n+1)2. (4.12)

We denote the corresponding eigenfunctions of the unperturbed problem
Eq. (4.3) with K=0 by Q ±

n (u1, u2). Explicitly the first few eigenfunctions
are

Q ±
0 (u1, u2)=u1 ± u2,

Q ±
1 (u1, u2)=[u1 · u2 +

1
3] (u1 ± u2),

Q ±
2 (u1, u2)=[(u1 · u2)2

+
2
5 u1 · u2 − 1

5] (u1 ± u2),

(4.13)

with eigenvalues − 2, −8, −18 respectively.
The explicit expression for the polynomials (9)

f ±
0n(x)= C

n

a=0
S ±

an xa (4.14)
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yields the corresponding expansion

Q ±
n (u1, u2)= C

n

a=0
S ±

an P ±
a (u1, u2) (4.15)

of the eigenfunction Q ±
n (u1, u2) in terms of vector functions P ±

a . The coef-
ficients S ±

ln can be regarded as elements of matrices S ±. With our choice of
normalization the diagonal elements of these matrices are equal to unity.
From Eq. (4.13) we see that the upper left hand part of the matrices is

S ±=R
1 +

1
3

− 1
5 · · ·

0 1 +
2
5 · · ·

0 0 1 · · ·
· · · · · · · · · · · ·

S (4.16)

Due to the polynomial nature of the eigenfunctions the matrices are trian-
gular. We denote the inverse matrices by

T ±=(S ±)−1. (4.17)

These matrices are also upper triangular with unity along the diagonal.
From S ± truncated at dimension d one can find the truncated T ± by
inversion. From Eq. (4.16) one finds for the upper left hand part

T ±=R
1 ± 1

3
1
3 · · ·

0 1 ± 2
5 · · ·

0 0 1 · · ·
· · · · · · · · · · · ·

S (4.18)

The matrices yield the inverse expansion

xn= C
n

a=0
T ±

an f ±
0a (x) (4.19)

and correspondingly

P ±
n (u1, u2)= C

n

a=0
T ±

an Q ±
a (u1, u2). (4.20)

We can use the matrices for a change of representation. By substitution of
Eq. (4.20) into Eq. (3.10) we find

k ±(u1, u2)= C
.

a=0
C ±

a Q ±
a (u1, u2) (4.21)
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with coefficients

C ±
a = C

a

n=0
T ±

an A ±
n . (4.22)

Substituting the inverse transformation into Eq. (3.11) we find the
equations

sC ±
a + C

.

aŒ=0
M̂ ±

aaŒC
±
aŒ

=−Û ±
a (4.23)

with Û ±=T ± · U ± and transformed matrix

M̂ ±=T ± · M ± · S ±. (4.24)

We can write in obvious notation

M ±=−L ±
0 − V ±, M̂ ±=−L̂ ±

0 − V̂ ±. (4.25)

The matrices S ± can be constructed from the explicit expression for
the Jacobi polynomials. (9) If we consider polynomials up to degree d − 1
we obtain a d × d-matrix S ±

d , from which we find the corresponding
d × d-matrix T ±

d by inversion. The matrices S ±
d and T ±

d may be used to
construct corresponding matrices L̂ ±

0d and V̂ ±
d by transformation of the

truncated L ±
0 and V ±

0 . The transformed matrix L̂ ±
0d is diagonal with the first

d eigenvalues l ±
n along the diagonal. The transformed matrix V̂ ±

d is tri-
diagonal apart from nonvanishing elements in the last column. Clearly this
tends to a tridiagonal matrix V̂ ± in the limit d Q ..

The nearly tridiagonal nature of the matrix V̂ ±
d is surprising and

requires explanation. The property is related to recursion relations between
the Jacobi polynomials, and hence to their hypergeometric nature.

With our choice of normalization the Jacobi polynomials satisfy the
three-term recursion relation (9, 10)

xf ±
0n=f ±

0, n+1 ±
1

(2n+1)(2n+3)
f ±

0n+
n(n+1)
(2n+1)2 f ±

0, n − 1. (4.26)

The relation allows one to construct the higher order polynomials from the
initial values f ±

00=1 and f ±
01=x +

1
3. The polynomials also satisfy the

differential recursion relation (9, 10)

(1 − x2)
df ±

0n

dx
=−n 1x ±

1
2n+1

2 f ±
0n+

2n(n+1)2

(2n+1)2 f ±
0, n − 1. (4.27)
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We have of course

L̂ ±
0kl=−2(k+1)2 dkl. (4.28)

Comparing the recursion relations with Eq. (4.6) we see that the action of
the operator V ± is represented by the matrix V̂ ± with elements

V̂ ±
kl =K 1 (2k − 1) dk, l − 1 +

2
(2k+1)(2k+3)

dkl −
k(k − 1)(2k+1)

(2k − 1)2 dk, l+1
2 .

(4.29)

We denote the tridiagonal matrix obtained from V̂ ± by truncation at
dimension d by V̂ ±

td . This differs in the last column from the matrix V̂ ±
d

considered earlier. The diagonal form of L̂ ±
0d and the tridiagonal form of

the matrix V̂ ±
td allows rapid numerical solution of the truncated set of

equations (4.23). The calculation of the quantities Â(K, w) and B̂(K, w)
defined in Eqs. (2.23) also converges more rapidly with increasing dimen-
sion d in the tridiagonal scheme than with truncation in the original
Eq. (3.11), as employed earlier. (7)

5. TIME-CORRELATION FUNCTIONS

In this section we present numerical results for the time-correlation
functions Gs(K, t) and Gd(K, t) defined in Eq. (2.18). Owing to the rapid
convergence of our scheme we can consider a wide range of K-values. Due
to the symmetry (7)

Gs(−K, t)=Gs(K, t), Gd(−K, t)=−Gd(K, t) (5.1)

it suffices to study positive values of K. We study the behavior in the range
0 < K [ 10. For K=10 the interaction term in the Smoluchowski operator
is an order of magnitude larger than the free diffusion term.

From Eq. (2.15) we find the initial values

Gs(K, 0)=1, Gd(K, 0)=
Y1(K)
Y0(K)

. (5.2)

For large positive values of K the function Gd(K, 0) tends to − 1, implying
that the second dipole has direction opposite to the first one. The pair cor-
relation function will be calculated from the self-correlation function
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and the mutual correlation function according to Eqs. (2.18) and (2.19).
From Eqs. (2.11) and (3.3) we find with Us=u1 and U+=u1+u2

U ±
sl =1

2 dl0, U+
+l=dl0, U−

+l=0. (5.3)

From Eq. (3.11) we see that A ±
l % − U ±

l /s for large s. It follows from
Eq. (3.16) that the self-correlation function can be written as a sum of
two terms

Gs(K, t)=G+
s (K, t)+G−

s (K, t) (5.4)

with the time-evolution of G ±
s (K, t) governed by the matrix M ±(K), and

with initial values

G ±
s (K, 0)=

Y0 ± Y1

2Y0
. (5.5)

The mutual correlation function is governed by M+(K) only, since u1+u2 is
even under particle interchange. It is identical with 4 G+

s (K, t). We have

G± (K, t)=4 G ±
s (K, t). (5.6)

Hence the pair correlation function can be written as a sum of two terms,
as in Eq. (5.4), with

G ±
d (K, t)= ± G ±

s (K, t). (5.7)

We define relaxation functions

C± (K, t)=G ±
s (K, t)/G ±

s (K, 0) (5.8)

with initial value unity. Correspondingly the self-correlation function is
given by

Gs(K, t)=
Y0+Y1

2Y0
C+(K, t)+

Y0 − Y1

2Y0
C− (K, t), (5.9)

and the pair correlation function is given by

Gd(K, t)=
Y0+Y1

2Y0
C+(K, t) −

Y0 − Y1

2Y0
C− (K, t). (5.10)
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We analyze the time-dependence by a method developed elsewhere. (11)

The method employs numerical contour integration in the complex s plane
to find the relaxation functions as a sum of exponentially decaying contri-
butions. The expression Eq. (3.16) for the Laplace-transform of a correla-
tion function GUU(t) can be transformed to

ĜUU(w)=(W+· U+) · S+· C++(W− · U−) · S− · C−, (5.11)

where the matrix W ± has elements

W ±
kl =−2

Yk+l ± Yk+l+1

Y0
. (5.12)

The vector C ± is found from the solution of Eq. (4.23), truncated at suffi-
ciently high order to achieve convergence. The relaxation functions take the
form

C± (K, t)= C
.

j=1
a ±

j (K) exp[ − s ±
j (K) t] (5.13)

with relaxation rates related to the eigenvalues by

s ±
j (K)=−l ±

j+1(K). (5.14)

The coefficients a ±
j (K) are necessarily positive by general properties of the

Smoluchowski equation. By definition we have

C
.

j=1
a ±

j (K)=1. (5.15)

Surprisingly, it turns out that in the range of K considered only the term
j=1 contributes appreciably to the sum in Eq. (5.13). Hence the time-cor-
relation functions Gs(K, t) and Gd(K, t) are each to a good approximation
given by a sum of two exponentials. One can choose the level of truncation
to satisfy the sum rule Eq. (5.15) to any desired accuracy.

In Fig. 1 we plot the lower relaxation rates s ±
j (K) as functions of K.

In Fig. 2 we plot the values of the remainder 1 − a ±
1 (K). This shows that to

a very good approximation the higher order relaxation modes can be
neglected. The eigenvectors of the matrix M̂ ±(K) can be determined
numerically. One finds by inspection that for very large K the lower order
eigenvectors are significantly different from the corresponding eigenvectors
of L̂0

±. The simple relaxation of the functions C± (K, t) is therefore
surprising.
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Fig. 1. Plot of the lower relaxation rates s+
j (K) (solid curves) and s−

j (K) (dashed curves)
as functions of K for j=1, 2, 3 (bottom to top). The rates for K < 0 are given by
s+

j (K)=s−
j (−K).

For K > 0 the function C− (K, t) relaxes slower than C+(K, t), asymp-
totically with rate s−

1 (K). For large K the rate s−
1 (K) tends to unity. In this

limit the pair of dipoles is strongly bound antiferromagnetically. The slow
decay with s−

1 (K) % 1 corresponds to rotational diffusion of the tightly
bound pair, with diffusion coefficient equal to half that of a single free
dipole. In this picture the higher modes correspond to internal relaxation of
the pair to its tightly bound equilibrium configuration. In the limit of large
positive K the functions Gs(K, t) and Gd(K, t) become equal and opposite
with a slow relaxation given by rotational diffusion of the tightly bound
pair.

For large |K| the relaxation rates s ±
j (K) vary linearly with K. Corre-

sponding approximate eigenfunctions can be found from an asymptotic
analysis. (6)

In Fig. 3 we plot the time-correlation functions Gs(K, t) and
Gd(K, t)/Gd(K, 0) as functions of time for K=1. Both functions start at
unity, but the second soon is larger than the first. The reason is that soon
the second term in Eqs. (5.9) and (5.10) dominates, and in the second
function the normalizing factor |Y0/Y1 | is larger than unity. At interaction
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Fig. 2. Plot of the remainder 1 − a+
1 (K) (upper curve) and 1 − a−

1 (K) (lower curve) as func-
tions of interaction strength K.
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Fig. 3. Plot of the time-correlation function Gs(k, t) (lower curve) and Gd(K, t)/Gd(K, 0)
(upper curve) as functions of t for interaction strength K=1.

strength K=10 the difference between the curves is smaller, as shown in
Fig. 4. This agrees with the picture discussed above.

As noted above, the decay of the relaxation functions C± (K, t) is
remarkably simple. In each case it is given essentially by a single exponen-
tial over the whole range of interaction strength, as shown in Fig. 2. Of
course, the total dipole moment u1+u2 and the staggered moment u1 − u2

are rather simple variables, but this cannot be the complete explanation.
For the more complicated variables X1 ± X2 defined in Eq. (2.20) the decay
involves essentially two exponentials. (7)

To conclude this section we mention that the eigenvalues and eigen-
vectors of the matrices M̂ ±(K) can be studied analytically in perturbation
theory. For small interaction strength K Bloch’s perturbation theory (12) can
be employed. Calculations have been carried out to order thirty. (6) For
large interaction strength an asymptotic analysis based on the differential
equation (4.9) can be performed. (6) We do not enter into the details here.

6. DISCUSSION

We have presented an exact solution of the rotational Smoluchowski
equation for two dipoles with Heisenberg interaction. The time-correlation
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Fig. 4. Same as in Fig. 3 for interaction strength K=10.
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functions of the two dipole moments have been evaluated over a wide
range of interaction strength. The correlation function of the total dipole
moment and that of the staggered moment to a good approximation decay
with a single exponential. This must be a peculiarity of the field-free case,
since with an applied field already the relaxation of a single dipole is far
more complicated. (11, 13)

The problem we have studied has an interest of its own. Its solution is
a necessary preliminary for an analysis of the dynamics of Heisenberg
liquids (14, 15) and suspensions. (7) In addition, the method used is of relevance
for the related problem of dipolar liquids and ferrofluids with true electro-
static or magnetic dipole interaction. In that case the problem of two
interacting dipoles is far more complicated than for the Heisenberg
interaction considered here, since the dependence on the relative position
vector makes the dipole interaction anisotropic. The same is true for the
effective interaction between two asymmetric molecules in a liquid. (16, 17)

A solution of the pair problem for the dipole case has been presented
elsewhere. (6)
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